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We obtain exact time-power series through l l t h  order for cooperative diffusion 
in a one-dimensional lattice gas with nearest-neighbor interactions. In the high- 
temperature limit (single-site exclusion one) mean field theory is exact and the 
model is soluble for arbitrary initial conditions. The exact solution is used to 
recast the time-power series for a general temperature as a series in the 
appropriate function obtained from the high-temperature limit. We discuss why 
more conventional methods of extracting power-law exponents for the asymptotic 
long-time behavior do not work well for this model. 
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singularities. 

1. I N T R O D U C T I O N  

In the present paper we explore the use of exact power series in the time to 
describe the evolution of a one-dimensional lattice gas with nearest-neighbor 
interactions to equilibrium via a site-hopping mechanism (diffusion). 
Specifically, no two particles can occupy the same lattice site at the same 
time (excluded volume) and particles on nearest-neighbor lattice sites 
experience an attractive interaction (clustering tendency). Employing matrix 
techniques similar to those used in previous studies on homogeneous lattice 
gases,(1 3 ) we obtain a finite number of the exact coefficients in the time 
series. 

One can imagine molecules adsorbed on a linear lattice, as illustrated 
in Fig. la. The number of particles on the lattice is fixed and we consider 
the internal diffusion of the molecules by the mechanism of hopping from 
a given site to a neighboring unoccupied site, as illustrated by the arrows 
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Fig. 1. (a) Illustration of the diffusion of particles on a 1D lattice where the particles can hop 
to nearest-neighbor unoccupied sites. (b) Illustration of the initial condition where the left half 
of the latice is occupied and the right half is vacant. (c) Initial condition of a single particle 
at a given site. 

in Fig. 1. Letting 0 and 1 represent, respectively, lattice sites unoccupied 
and occupied by a particle, then the basic reaction is the switching of a 0 
and a 1 as follows: 

0 1 ~  1 0 (1.1) 

Incorporat ing the influence of nearest-neighbor particles, one has three 
basic d i ~ r e n t  types of reaction (where the sites involved in the switch of 
state are underlined): 

0 0 1 0 ~ 0 1 0 0  

1 0 1 0 ~ 1 1 0 0  (1.2) 

1 0 1 1 ~ 1 1 0 1  

The specific process that we will study is the evolution toward a 
uniform density of the "two-phase" state where, at zero time, half of the 
lattice is filled and the other half is empty (as illustrated in Fig. lb): 

. . . 1 1 1 1 1 1 1 0 0 0 0 0 0 0 . . .  (1.3) 

We give the coefficients in the time-power series for the species on either 
side of the original phase boundary through 1 l th order in the time. We will 
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label the sites in the neighborhood of the boundary between all l's and all 
O's as follows: 

(occupancy of site) 

(site number) 

Thus we begin with the initial condition 

em(t  = O) = 1 

em(t=O)~-O 

. . .  1 1 1 0 0 0 . . .  
(1.4) 

. . . ( - 3 )  ( - 2 )  ( - 1 )  (0) (1) (2) . . .  

(m < 0) 
(1.5) 

(m~>O) 

while at infinite time the density is uniform (there can be no equilibrium 
phase boundary in the one-dimensional nearest-neighbor Ising model) 

Pro(t= oo) = 1/2 (all m) (1.6) 

We will focus attention on the density at the original boundary; specifically 
we consider the following function [the subscript x refers to the temperature- 
dependent Boltzmann factor between nearest-neighbor occupied lattice sites; 
see (2.3)] 

q x = 2 P - l - l = { l o  as as t~t~O~ (1.7) 

which, as indicated, will decay to zero at long times. For magnetic systems 
qx is the magnetization. We anticipate that the function q~ will decay as a 
power law in the time (as illustrated for the high-temperature limit in 
Fig. 2) 

qx "~ t -~ (1.8) 

We have recently been successful in extracting power-law exponents from 
time-power series for the growth of Eden clusters, (4) A + B ~ 0  type 
reaction-diffusion systems, (s) and aggregation processes obeying the 
Smoluchowski equation (with general sum or product kernels). (6) For all 
present system, involving diffusion alone, we utilize yet another approach 
as follows. 

In the high-temperature limit (where excluded volume is retained, but 
the nearest-neighbor attractive interactions vanish) one can solve the 
diffusion problem exactly for the one-dimensional lattice gas for arbitrary 
initial conditions (arbitrary density) in terms of appropriate functions for 
single-particle random walks (illustrated in Fig. lc). We will refer to the 
high-temperature limit of the function qx described in (1.7) simply as q. We 
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thus know q exactly. One of the known properties of the high-temperature 
limit is its asymptotic behavior at large t, 

q,.~t - m  (1.9) 

where in the infinite-temperature limit one has 7 = 1/2 as expected for 
diffusion. Using the function q, we can convert the time-power series for qx 
into an expansion in terms of q in the following form: 

[1-qx] = ~ an[-1-q]" (1.10) 
n = l  

Given a finite number of terms in the time-power series for qx we can 
obtain the same number of terms in the expansion of (1.10). The 
asymptotic properties of qx can be explored as a function of q [whose 
asymptotic behavior is known from (1.9)]. 

We will proceed as follows. In the next section we outline the calcula- 
tion of the exact time-power series for our one-dimensional lattice gas with 
nearest-neighbor interactions. Then we review the solution for the high- 
temperature limit, using Glauber's method. It will turn out that for excluded 
volume only (infinite temperature), mean field theory is exact for this model. 
We next review the mean field approximation at general temperature as 
applied to our model (where it is not exact). We then illustrate the function 
expansion of (1.10) and give numerical examples. Finally, in the discussion 
we outline why other, more direct approaches to the calculation of the 
power-law exponent do not work in this case. 

2. EXACT POWER SERIES IN THE T I M E  

We have previously discussed the kinetic parameters for the one- 
dimensional Ising model in terms of breaking and forming bonds; our 
treatment follows that work. (2) We will take the activation energy e ~ to 
break a nearest-neighbor bond as a fraction (varying from zero to one) of 
the bond energy 

* = - ~  (2.1) 

so that the rate factor associated with breaking a bond becomes 

~ = x  -~ (2.2) 

where 

x = exp( - e/kt) (2.3) 
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is the equilibrium Boltzmann factor for forming a nearest-neighbor bond. 
If ~c is the rate factor for breaking a bond, then by detailed balance 
x~c = x I - ~ must be the rate factor for forming a bond. Taking r as the basic 
rate parameter for diffusion (site hopping) with no nearest-neighbor bonds 
being formed or broken, one then has the specific rate constants for the 
reactions in (1.2): 

0 0 1 O§ ; ~0 1 0 0 ( r / r = l )  

1 0 1 0 ~  ~x~ 1 1 0 0 (rx~c/rK)=x)  (2.4) 

r x ~ r  2 
1 0 1 1 , ~ 1 1 0 1 ( rxK2 / rxK2=l )  

- -  r x K 2  

The ratio of the forward to the backward rate constants for each process 
is indicated; notice that, as required by detailed balance, only the middle 
reaction results in a net change in the number of bonds. 

Another scheme for the rate parameters is one similar to that intro- 
duced by Glauber (7) for the change of a single spin influenced by states of 
neighboring spins: 

O 0  1 0 ~  r ~0 1 O 0  
r 

1 0 1 O,  r(l+y)) 1 1 0 0 (2.5) 
r (1  - - ? )  

1 0 1 1< ~ ~1 1 0 1 
r 

where, again from detailed balance, 

1 + 7  
- - = x  (2.6) 
1--7 

Note that in the scheme of (2.5) an isolated particle and an isolated hole 
(0-state) diffuse at the same rate. 

To obtain exact series expansions in the time for the occupation 
probabilities of sites on a linear lattice with the initial condition of 
(1.3), one observes that to obtain n exact derivatives of the occupation 
probabilities one need consider only configurations involving n moves or 
less [relative to the initial configuration of (1.3)]. Indicating the number of 
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moves by subscripts, the following species (showing all configuations 
involving 2 moves or less) 

(So) + + + - - -  

(&)  + + -  + - -  

(S2a) + + - - 

( S 2 b )  "~ - -  -t- "t- - -  - -  

+ - 
(2.7) 

are described by the following differential equations [using the rate 
parameters of (2.4); we let the symbol Sk designate both a lattice configura- 
tion and its probability]: 

dS o 
- -  ( X / s  S 1 - -  ( / s  0 

dt 

dS,  _ (K)So - (1 + x~c + x x 2 ) S l  + S2a --~ (x~2) S2b 
dt 

d S 2 a  
= $ 1 +  "'" 

dt 

dg2b= (x/.~2)S1 "~ ... 
dt 

(2.8) 

The site occupation probabilities [using the labeling of (1.3)] are given in 
terms of the Sk, for example, 

P - I = S o + S 2 b +  --" 

Po = $1 + Sab + "'" (2.9) 

P I = S 2 a +  ""  

where the additional terms indicated, but not shown, are for species 
involving more than two moves. 

To obtain a power sries in the time, we follow procedures previously 
outlined. ~ The relations in (2.9) can be generalized by introducing a row 
vector s, whose general k th  element is the probability of the Sk lattice 
configuration, and a column vector Vm whose general kth element is the 
occupation number (0 or 1) of the m th lattice site in lattice configuration 
Sk. One then has 

P m =  S "  v m (2.10) 
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Equations (2.8) can be written in terms of the vector s as follows: 

d s  
- - =  - s W  (2.11) dt 

where W is the appropriate matrix of rate parameters. Writing the Sk as 
power series in time 

Sk= ~ S~)t~/n! (2.12) 
n=O 

then, on taking successive derivatives, evaluated at t = 0, one has (where 
s ~") is a vector whose general element is S~ ")) 

s (") = ( -  1)~s(~ ~ (2 .13)  

Finally, writing Pro(t) as a power series in the time 

Pm(t)= ~ P~)t"/n! 
n=O 

where 

(2.14) 

\ dtn /tt= ~ (2.15) 

one has [combining (2.10)-(2.14)] 

Pn(m) __(____ 1 )ms(O)WmV~ P~) = (-- 1)n s(~ (2.16) 

All of the species Sk as in (2.7) are easily generated by computer, as 
is the matrix W; the series are then obtained by  simple matrix multiplica- 
tion. For  calculating exactly the first m derivatives requires a square matrix 
of linear dimension 4, 7, 12, 19, 30, 45, 61, 83, 111, and 143 for n = 2 to 
n = 11, respectively. The matrices thus get large, but we are able to deter- 
mine a fairly large number of exact coefficients in the time power series. We 
have determined all of the coefficients P(m ~ for lattice sites in the vicinity of 
the original boundary through n = 11; these are available from the authors 
on request. For  example, the first three coefficients for the lattice sites 
immediately on either side o f  the original boundary [as defined in (1.3)] 
are (where w = nx) 

p(_O) = 1, P")~ = -to, e(_2) = x2 + w~: + wx 2 

p(3~ = _ (  _tr + K3 _~_ W/s -{- 3Wtr 2 + W/t7 3 + W2K "~ 2W2tr 2 + 2w2x 3) 
(2.17) 

o, P o'= P g)= + 
P~o 3) = 2x + x 2 + x3 + 2wx + 3wx 2 -- wx 3 + w2x + w2tc 2 
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3. T H E  H I G H - T E M P E R A T U R E  L IM IT  

In this section we will apply the method of Glauber ~7) to obtain a 
stochastic model of relaxation in a system where the basic reaction is given 
by the procedss of (1.1), i.e., single-particle site hopping. The method of 
Glauber has been applied by Kawasaki 18) to the switching of nearest- 
neighbor spins in the magnet, a model that is the exact equivalent of par- 
ticle diffusion. We will follow Glauber's notation closely. We let am be a 
double-valued variable indicating the state of occupancy of the mth site on 
the lattice. The quantity a can have the values + 1 (indicating an occupied 
site) and - 1  (indicating a vacant site); since we will make use of the 
mathematical properties of ~r, this choice is more useful than letting 1 and 
0 represent the occupancy of a site. Let P{~r} be the a priori probability of 
a particular lattice configuration, {cr} being a vector of a values giving the 
state of occupancy of all the sites on the lattice. Then the master equation 
for the time rate of change of P{a} is 

dt = - - 2  Wn(~n' an+l) P(ffl '"ffn~Tn+l'") 
n 

"+-~_aWn(--~n, - - O ' n + l )  P(o" 1 . . . .  ~n--O'n+l "") (3.1) 
n 

where w.(a., a.  +1) is the transition probability for the reaction (a. ,  a .  +1) 
( - a ~ ,  -a~+  1). Equation (3.1) can be written more compactly as 

de{a) 
dt = - - 2  ~ O~Wn(~O'n,O~ffn+l)P(Gl""(X~n,~n+l"") (3.2)  

n ~+_1 

Multiplying by a,. and summing over {a}, one finds 

a(a . , )_  .2 ~ a,.(Wm + w,._ 1) P{a} (3.3) 
dt {~} 

The asymmetric form of (3.3) results from our choice of describing the 
switching as involving sites m and m + 1; we alternatively could have 
chosen m -  1 and m. On using symmetric w's, the resulting equation will of 
course be symmetric, as we will see shortly. 

In Glauber's original work he treated the case of the change of a single 
a value (flip of a single spin in 
of a particle in the lattice gas). 

the magnet or the addition, or adsorption, 
His basic analog of (3.3) has the form 

d(~m) 2 ~ ~w*~P{~} (3.4) 
dt (~} 
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where w *  is the transition probability in lattice gases for the adsorption- 
desorption process. If both adsorption-desorption and switching (diffusion) 
processes can occur simultaneously, then one obtains 

d ( a m )  
- 2  (3.5) 

dt {~) 

The presence of internal diffusion will effect the rate of adsorption even if 
the system is uniform (readjusting microconfigurations on the lattice 
influences the sites available for adsorption). 

In the high-temperature limit one has x = 1 and x = 1, which reduces 
the kinetics to a study of independent particles, the only interaction being 
the restriction that only one particle can occupy a given site (which means, 
of course, that a particle cannot move to a neighboring site if it is already 
occupied). In this case the transition probability for the process given in 
(1.1) for a one-dimensional lattice gas is 

W m = �89 - am+ ~) (3.6) 

which is zero for the (m, m + 1) configurations ( + + ) and ( -  - ) and is r 
(the basic rate parameter for switching) for ( - + ) and ( + - ). Using (3.6) 
in (3.3) yields 

d ( a m )  
- -  - ( O m - ~ )  -- 2 (am)  + ( a m + ~ )  (3.7) 

d(r t )  

Since 

( q m ) = P m - ( 1 - P m )  (3.8) 

where Pm is the a pr ior i  probability site m is occupied, (3.7) can be written 
as 

dPm 

d(r t )  
-- Pm - 1 - -  2Pro + P m  + 1 (3.9) 

Equation (3.9) is the differential equation for the symmetric random walk 
of a single particle, 

...(m-- l) ~ (m) ,5-* (m+ l)... 
r r 

(3.1o) 

Thus, many-body diffusion of independent particles on a lattice where 
multiple particle occupancy of a site is forbidden is given exactly by the 
superposition of single-particle random walks. In addition, the solution for 
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diffusion on two- and three-dimensional lattices is obtained by simply 
taking the products of the probability distributions for independent random 
walks in each dimension. 

In what follows we will take r = 1, which is equivalent to scaling time 
so as to introduce a new variable t' = rt (for simplicity, we drop the prime). 

To incorporate specific initial conditions, it is more convenient to 
deal with conditional probabilities. Let P(n(O)lrn(t)) be the conditional 
probability that a particle is a site n at time t having started at site m at 
t = 0. Then for a single-particle symmetric random walk P(nlm) obeys the 
same differential-difference equation as P , ,  

de(nlm) 
dt 

P(n[m-1)-2P(nlm)+P(nlm+l) (3.11) 

which has the solution 

P(n(O)lm(t)) = e-2'Im_~(2t) (3.12) 

where Im-n is the modified or imaginary Bessel function. The general 
solution for the average site density, Pm, is then given by 

Pro(t) ~" Z P.(O) P(n(O) lm(t ) )  (3.13) 
n 

where P,(0) are the arbitrary initial site densities. 
If we consider the special initial conditions of (1.3), i.e., 

P,,(O) = 0 (n >/O) 
(3.14) 

P.(0) = 1 (n < 0) 

then combining (3.12)-(3.14), one has 

--cx~ 

Pm(t)=e-2' ~ Im_n(2t ) 

= e -2t ~ Ik(2t) 
k = m + l  

(3.15) 

Using the following properties of the imaginary Bessel functions (9) 

Ik=I_k 

e 2t ~ Ik (2 t )= l  
k ~  --cx3 

(3.16) 
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we find that (3.15) becomes 

Pm(t )  = �89 � 8 9  - 2 t  ~ /~(2t) 
.=o 

P _ , , =  1 - P , , -  1 

The first few specific cases of (3.17) are 

and 

(m>~O) 

Po = � 8 9  �89  

P1 = �89 - �89  - e - 2'I1(2t) 

P2 = �89 -- �89 - e -  2'I1(2t ) -- e-2t12(2t ) 

P_l ( t )  = I t l e - 2 ' I o ( 2 t  ) 

Using the definition of (1.7), we then have 

q = e -2 t l o (2 t )  

The general form of the modified Bessel function is 

12k 
I , ( 2 t )=  t" Z , .  ( k+n) !  

k=O K! 

while the asymptotic form (9) for large t is 

e 2' [- # - 1  ( # - 1 ) ( # - 9 )  ( # - 1 ) ( # - 9 ) ( # - 2 5 )  
I . ( 2 t ) -  (4zrt) 1/2 [ 1 + - - ~ - +  2! (16t) 2 3! (16t) 3 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 
where 

/~ = 4n 2 (3.23) 

The expansion of q(t )  about the origin is then 

q(t )  = 1 - 2t + 6t2/2! - 20t3/3! + 70t4/4! - 252t5/5! + 924t6/6! - 3432t7/7! 

+ 12,870t8/8!- 48,620t9/9! + 184,756t1~ 705,432t11/11! + --. 

(3.24) 

In the limit of x ~ 1, the series for general x described in Section 2 for qx 
reduce to the above series. At large t, the asymptotic form of Io(2t) is given 
by(9) 

eZt /1 1 9 75 
Io(2t) = (4~-~1/2 ~ + ] - 6 - - ~ + ~ + ~ +  - . . )  (3.25) 
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giving for q(t) 

q(t) ~ (0.2821) ~ t t  I1 
1 

+ (0.0625) t + (0.01758)~ + (0.009155)~ + . . . ]  

(3.26) 

In Fig. 2 we compare the exact q(t), giving the decay of the boundary 
probability in the high-temperature limit, given by (3.20) and shown as a 
solid curve, with the approximation (solid diamonds) 

q( t) ~ (0.2821)t-1/2 (3.27) 

In Eq. (3.27), q ( t ) ~  as t ~ 0 ;  otherwise (3.27) is a remarkably good 
approximation to the exact function over a large range of t values. We note 
that q is also the probability that an isolated particle (e.g., as shown in 
Fig. lc) remains at a given lattice site as a function of time. 

We note in passing that the generalization of (3.5) to higher-order 
expectation values is 

d(tTiaj...  )/dt 

= - 2  ~, ffilTj "'" [ (Wi -~  W i _ l )  -~- (Wj-~- W j _ I )  "~- "'" -~- W~ -~- W 7 -~- "" "3 P{[7}  

(3.28) 

1.0 

0 . 8  

0 . 6  

0 . 4  

0 . 2  

0.0 
0 

I I I I 

2 4 6 8 10 

t 

Fig. 2. Probability of a single particle (initial condition of Fig. lc) remaining at the initial 
site, which is the same as the function qx of (1.7) in the high-temperature limit. The solid curve 
is the exact solution of (3.20), while the solid diamonds are the approximation of (3.27). 



Cooperative Diffusion in 1D Lattice Gases 1145 

Restricting the system to diffusion only (setting w* = 0) and using (3.6) for 
w, one finds 

( a i a j . . . )  = ( ~ , ) ( a s )  ... (3.29) 

The factorization of (3.29) is the basic assumption of mean field theory, 
which we see is exact in the high-temperature limit for our model. 

4. M E A N  FIELD A P P R O X I M A T I O N  

In the previous section we found that in the high-temperature limit the 
mean field assumption, Eq. (3.29), was in fact exact. In this section we 
construct the necessary equations to obtain the mean field approximation 
at a general temperature for cooperative diffusion relative to the results 
obtained with the exact series expansions. We begin by constructing the 
differential equations for diffusion using Glauber's approach. The basic unit 
for cooperative diffusion in one dimension, is a quartet of contiguous sites, 
which we label as follows: 

o'm_ xo',~a,~ + 1am +2 (4.1) 

where ai = ___1, indicating the presence or absence of a particle at site i. We 
introduce the functions 

fm=O'm--lO'm (4.2) 

gm = O'm + 10"m +2 

which have the property 

f ,  g = + 1 for like a's 
(4.3) 

f,  g = - 1  for unlike a's 

The basic diffusion reactions of (1.2) have the following structure in terms 
of the appropriate f and g factors (the numbers below a doublet give the 
sum, f +  g):  

f g f g 
( + ) ( - ) , - ,  ( - ) ( + )  

0 0 

( - )(  - ) ,-+ ( + )( + ) ( 4 . 4 )  
--2 + 2  

( - ) ( + ) , - - ,  ( + ) ( - )  
0 0 

822/71/5-6-20 
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One observes that in order only the proper switching reactions, one 
requires the factor Wm of (3.6), while in order to assign the correct 7 terms 
of (2.5), one needs the following factor: 

um= 1 -- (7~2)(fro + gm) (4.5) 

The differential equation for cooperative diffusion using the Glauber-like 
assignment of parameters given in (2.5) is then 

d(  ff m) 
2 Z O'm(WmUm+Wm lUm--1) (4.6) 

dt {~} 

which gives [-setting the basic diffusion parameter r of (2.5) equal to one] 

dqm/dr= (qm_ l -  2qm + qm+ ~) 

+ ( y / 2 ) ( - - q m - z + q m  l + q r n + l - - q m + z + S m - t  + 2Sm+Sm+l) 

(4.7) 

where [with (3.8) this is q of (1.7)] 

q m  = ( a m )  , Sin= (0" m lO'mO'm+ 1) (4.8) 

In the high-temperature limit x = 1 one has, from (2.6), y = 0, in which case 
(4.7) reduces to (3.7). 

Using the simplest form of closure (mean-field approximation) gives 

Sm= qm - 1 qm qm + 1 (4.9) 

From (3.8) we have the relation 

e m =  (1 + qm)/2 (4.10) 

For the border site m = - 1  [see (1.4)] one has 

p{O)= 1, pO)=  - ( 1  - 7 ) ,  p{2)= 3(1 -Y)  
(4.11) 

e(3) = -10(1  - y)(1 + 3y/5) 

while the mean-field equations of (4.7) and (4.9) yield 

e~O/= 1, eCa)= - ( 1 - 7 ) ,  P~2) = 3(1 - y ) ( 1  - 7 )  
(4.12) 

p(3)= " 1 0 ( 1 - - 7 ) [ ( 1 - - 7 ) 2 - 4 7 ( 1 - Y ) ]  

One sees that the mean-field approximation gives the derivatives exact only 
through the first derivative. 
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In order to treat the more general case of the transition probabilities 
used in (2.4) for the special case of ~ = 1/2, the following factor is required: 

Um=(1--fmgm)+(lq-f--mgm  lI12 1 

(4.13) 

Using the W m of (3.6) with (4.13) in (4.6) gives the required differential 
equation: 

d q m / d t = a q m _ l - 2 ( a - b ) q m + a q m + l - b ( q m  2+qm+2) 

q- b(sm - 1 - 2Sm "t- S m + 1 ) 

+ ( 1 - a + b ) [ s ~ ( - 2 ,  - 1 ,  1 ) - s ~ , ( - 2 ,  O, 1) 

--Sm(--1, O, 2) + S ' ( - -  1, 1, 2)] (4.14) 

where 

and 

a : �89 + x//x), b = l (x f -x -  1/x/x) 

s ' ( i ,  j ,  k )  = ( G m + i ( ~ m + j f f m + k >  

In the high-temperature limit as x ~ 1 one has 

xfx ,,~ 1 + 7', 1/x/~ ~ 1 - 7' 

giving 

(4.15) 

(4.16) 

(4.17) 

a =  1 +~,'/2, b = ~'/2, a - b = 1 ,  1 - a + b = 0  (4.18) 

Using (4.18) in (4.14) with Y=7'  reduces (4.14) to (4.7). Of course the 
Glauber form is exact for all temperatures; it is only as one approaches 
the high-temperature limit that the forms of (4.14) and (4.7) become 
equivalent. In the high-temperature limit, we have from (4.15) that a = 1 
and b = 0, in which case (4.14) reduces to (3.7). 

In principle it is not difficult to go beyond the mean field approxima- 
tion by using higher-order closure approximations. The basic rate equation 
involves contiguous quartets of lattice sites. Thus in the mean field 
approximation the basic assumption is that quartet probabilities can be 
written as 

P~j~j~k~t = P~iP~jP~k  P~t (4.19) 
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in analogy with (4.9). A higher-order level of closure is obtained by writing 
the quartet 'probability as a Markov chain, e.g., 

P~,, j ,~, ,  = P, ,e (o-~  [ o-j) P(o-jl o-k) P(o-k I oz) (4.20) 

where P~e is the a pr ior i  probability that site i is in state ai, while P(o-il o-j) 
is the conditional probability that given state o-i at site i, state o-j follows at 
site j. 

5. E X P A N S I O N S  IN q 

In Section 3 we gave the exact series solution for qx of (1.7) in the 
high-temperature limit, which we called q. The exact closed-form solution 
for q in terms of a Bessel function was given in (3.20); the expansion about 
t = 0  was given in (3.24); and the expansion about large t was given in 
(3.26). For reference we repeat here the beginning terms of the expansion 
about the origin, 

q =  1 -  2t  + 6t2/2! + . . .  (5.1) 

In Section 2 we outlined the construction of the exact series for finite 
temperatures. The function qx begins [see (1.7) and (2.17)] 

qx = 1 - 2 x t  + 2(1 + x + x x ) ( x t ) 2 / 2 !  + . . .  (5.2) 

We then introduce the following function (with a similar definition for yx 
in terms of qx) 

{01 as t ~ 0  (5.3) 
y = l - q =  as t ~ o o  

From (5.1) and (5.2) one has Yx and y, respectively, as series in t. One can 
then eliminate t between the two functions and give yx as a series in y. We 
wil use yOc( t )  so as to make the first terms (initial slopes) in y and Yx 
identical. As an example, for the case of x = 4 and ~ = 1/2, one finds 

Yx = Y - y2 + (0.625) y3 + (0.11458) y4 -F (0.00521) y5 + (0.04431 ) y6 

+ (0.04680) y7 -F (0.05289) y8 + (0.05823) y9 -4- (0.06328) yl0 

+ (0.06797) yll  + ... (5.4) 

One sees that the series is quite well behaved; the beginning terms dominate 
and the coefficients of the higher-order terms are small and of uniform sign. 
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One can proceed in a similar manner  for the case of the mean field 
approximation.  We use the mean field approximation of (4.9) in (4.14) and 
obtain a recursion relation for the coefficients in the time-power series, in 
analogy with (5.2). We then define a quantity Ymr, in analogy with y of 
(5.3), and then expand Ymf in powers of y. Again using the case of x = 4 and 

= 1/2 as an example, one finds (no y2 term) 

yr, r=  y - (0.125) y3 _ (0.19271) y4 _ (0.04115) y5 + (0.03828) y6 

+ (0.08317) y7 + (0.07737) y8 + (0.06207) y9 -t- (0.04646) ylO 

+ (0.03868)yll + . . .  (5.5) 

As with (5.4), the beginning terms dominate and the coefficients of the 
higher-order terms are well behaved. 

In Fig. 3 we show Yx and Ymf as a function of y as given by the 
truncated series of (5.4) and (5.5), respectively. The dashed parts of the 
curves are extrapolations to the known limit Yx = Ymr = 1 at the point y = 1. 
One notes that as y is increased one has 

y >ymr>Yx  (5.6) 

that is, the mean field approximation overestimates the rate of decay to the 
equilibrium state. As x ~ 1 (T--* ~ )  one would have 

( T ~  oo) Y = Ymf = Yx (5.7) 

Yx 
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Fig. 3. The function yx= 1--qx [with q~ defined in (1.7)], for cooperative diffusion as a 
function of the corresponding quantity y =  1 - q  (with q the higher-temperature limit of qx). 
The curve marked "exact series" is obtained from Eq. (5.4), while the mean-field curve is a 
plot of Eq. (5.5). The dashed portion of the curves is an extrapolation to the known limit. 
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The value of x used in Fig. 3 represents only a very moderate degree of 
cooperative interaction. The value x = 4 ,  from (2.3), corresponds to 
- e / k T =  1.34, which is typical of a weak van der Waals interaction. One 
sees in Fig. 3 that the mean field approximation does not give a very good 
description of the time evolution of the cooperative system in our one- 
dimensional system. As mentioned at the end of Section 4, a higher form of 
closure beyond mean field would undoubtedly give better results. 

From Fig. 3 it appears that Yx goes to one linearly with y (i.e., there 
is no tendency for the function to hook in to the value Yx = 1 with either 
infinite or zero slope). If this is so, then we have 

( t ~  oo) q x ~ q  (5.8) 

From (3.27) we know that q varies as t -1/2 for large t. Thus, if we accept 
(5.8), we have 

( t ~ o o )  q x ~ t  -1/2 (5.9) 

6. D I S C U S S I O N  

In the previous section we saw that expansions of qx in terms of q, 
the high-temperature limit, are useful for cooperative diffusion. Here we 
explore why more direct approaches to the extraction of the power-law 
exponent do not work well in this case. We will focus on the high- 
temperature limit, since we know the exact solution in terms of a Bessel 
function [Eq. (3.20)], the series expansion about t = 0  [Eq. (3.21)], and 
the asymptotic series for large t [Eq. (3.22)]. 

One straightforward approach (4) would be to introduce the Euler 
transform 

s = t / ( l + t ) ,  t = l / ( 1 - s )  (6.1) 

which maps the infinite interval t = 0 to oo onto the finite interval s = 0 
to 1. From (5.9) we expect q(s) to have the form 

q(s) ~ (1 - s) ~ (6.2) 

where we know that ~; = 1/2. Taking the logarithmic derivative of q(s), one 
has [defining O(s)] 

(1 - s) d ln( q)/d In(s) = - O(s) 

(lim s ~ 1) O(s) ~ 7 = 1/2 
(6.3) 
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Using the series of (3.21), one obtains (no square term) 

O(s) = 2s - 2 s  3 - 3 s  4 - 2s 5 + 1 ( 1 / 3 ) s  6 q- 6 s  7 q- 9(33/72)s 8 

+ 8(1/3)s 9 + (11/60)s 1~  14(1/6)s 11 + ..- (6.4) 

We can then construct Pad6 approximants to O(s). For example, using the 
first six terms of (5.14), we obtain 

2s [1 - (26/15)si - ~ ] 1 5 - ' ~  + ( ~ ) - 7  + (3/5)s2 + (7/30)s3]J (6.5) O(s) 

The exact form O(t) is given by 

I1(2t)~ (6.6) 
O(t) = 2t 1 - lo(2t)J 

Using (6.6) and (3.22), we find that the asymptotic form of O(s) is 

s ~  l, O(s )=�89  ... (6.7) 

The exact behavior of O(s) is shown in Fig. 4a, while the Pad6 approxi- 
mant of (6.5) is shown in Fig. 4b. The main feature of Fig. 4a is that O(s) 
goes through a maximum before leveling off to the asymptotic value of 

= 1/2. While the Pad6 approximant reproduces the maximum accurately, 
it does not go to the proper limit as s ---, 1; increasing the number of terms 
in the approximants increases the accuracy with which the curve fits the 
maximum, but does not improve the estimate of O(s = 1). Thus the infor- 
mation contained in the series is used to construct the maximum, but does 
not offer a reliable estimate of the exponent 7 = 1/2. Thus, even though it 
looks like the t-1/2 form in Fig. 2 is a remarkably good approximation to 
the exact form, the logarithmic slope only gives the correct exponent as 
t --* oO. 

Another way to evaluate the exponent 7 is as follows. We use the 
function y = 1 - q  and the t series of (3.24) for q. We also introduce the 
scaled time 

t' = 2 t  (6.8) 

but for simplicity we will henceforth drop the prime. Equation (3.24) then 
gives y = y(t), which we can invert to give t as a function ofy.  From (3.27) 
the asymptotic form of t = t(y) is 

t~  ( 1__~'] ~/' 
\1 - y J  (6.9) 
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We can write t formally as a power series in y as 

t =  ~ any" (6.10) 
n=l  

the first terms of which are 

t = y + 0.75y 2 + 0.7083y 3 + 0.7292y 4 + 0.7833y 5 

+ 0.8619y 6 + - ' -  (6.11) 

One  sees tha t  this series is very well behaved,  all of the coefficients being 
positive.  If  the s ingular i ty  at  y = 1 de termines  the rad ius  of convergence of 
the function,  then  the ra t ios  of successive coefficients 

rn = ~ n / ~ n -  1 (6.12) 

0 . 7 5  
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0 . 0 0  
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0 . 5 0  

els) 

0 . 2 5  

(b) 
0.00 

0 . 0  0 . 2  0 . 4  0 . 6  0 . 8  1 .0  

Fig. 4. (a) The exponent O(s) defined by (6.3), using the variable s of (6.1), given exactly in 
the high-temperature limit by (6.6). (b) The exponent O(s) as given by the Pad6 approximant 
of (6.5). 
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should be asymptot ic  to the form (~~ 

r, = 1 + -  - 1 (6.13) 
n 

The ratios for (6.1l) are shown in Fig. 5a for n = 5-20; the solid curve is 
(6.13) with 7 = 1/2. Using (6.13), one can convert  each rn value into an 
estimate of  7, 7, ;  these values as a function of  1/n for n = 5-20 are shown 
in Fig. 5b. One sees that  the function is well behaved and the ?,  curve 
seems to be heated toward  the value ? = 1/2 (al though oscillations cannot  
be ruled out,  due to singularities in the complex plane). 
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Fig. 5. (a) The ratios of the series defined by (6.11) for the single-particle random walk in 
the high-temperature limit. The solid line is (6.13) with Y = 1/2. (b) The values of y as a 
function of n, Yn, calculated from the r n values of Fig. 4a using (6.13)+ The solid line is the 
constant  value 7 = 1/2. 
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Finally, we return to the case of  diffusion at a general temperature. We 
use our  t ime-power series to construct  an accurate representat ion of q~(t) 
over the whole time range. We proceed by applying the s t ransformat ion 
ofs (6.1) to qx(t) .  F r o m  (5.9) we expect 

qx(s) ~ (1 - s) 1/2 
(6.14) 

qx(s): ~ (1 - s )  

We thus expect qx(t)  2 to be the simpler function. The s-series expansion of 
q~ is given by (a = 1/2 and x = 4) 

qx(S) 2 = 1 -- 2s + (2.5)s2 -- (1.5833)s 3 - (0.3646)s 4 + (0.3010)s s 

-- (0.0263)s 6 -- (0.0386)s 7 + (0.2910)s 8 + (0.3724)s 9 

+ (0.03935)s 1 ~  (0.3834)s 11 -- [0.1075] s 12 (6.15) 

In  (6.15) the s 12 term is added as a correction to force q2 to go to zero as 
s ~ 0; f rom (6.14) we expect q2 to go to zero linearly with s. The s 12 coef- 
ficient in square brackets in (6.15) is seen to be a small correction. The 
function of (6.15) has the exact first 11 derivatives and gives the asymptot ic  
behavior  of (6.14). One  finds that  for this system this procedure of  adding 
on a correct ion term in fact works as well as or better than the use of 
Pad6 approximants .  The series t runcated at the l l t h  term, the series with 
a correct ion term, and Pad6 approximants  all agree to three significant 
figures out  to about  s=0 .75 .  The series with the correct ion term then 
agrees well with the mean  of  the Pad6 approximants  out  to about  s = 0.9. 
The Pad6 approximants  in general do not  go to zero (or even near zero) 
at s = 1. The behavior  of the function defined in (6.15) is shown in Fig. 6. 
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The function qx(S) 2 of Eq. (6.15) for cooperative diffusion. The curve shown is for 
x = 4  and ~ = 1/2. 
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